ON THE GEOMETRY OF *P*-CONVEX SETS FOR OPERATORS OF REAL PRINCIPAL TYPE

BY

KYRIL TINTAREV

Department of Mathematics, University of California, Irvine, Ca 92717, USA

ABSTRACT

A geometric criterion of *P*-convexity for supports is provided for sets whose boundary does not contain intervals of straight lines.

1. Introduction

Let $\Omega \subset \mathbb{R}^n$ be an open bounded set and $P: \mathscr{D}'(\Omega) \to \mathscr{D}'(\Omega)$ be a linear differential operator with constant coefficients. The set Ω is called P-convex (with respect to supports) if for every set K_0 compact in Ω there exists a set K_1 compact in Ω , such that for every $u \in \mathscr{E}'(\Omega)$, supp $P(-D)u \subset K_0$ implies supp $u \subset K_1$. Notation $\mathscr{E}'(\Omega)$ is used here for the space of distributions with compact support.

A survey on P-convexity can be found in [2], Chapter X. We know only a few cases when a geometric criterion for P-convexity is established. They include: (1) n = 2, (2) $P = (\alpha, D)$ or P is elliptic, (3) P is the wave operator, (4) n = 3, $\partial \Omega \subset C^2$ and P has simple characteristics (see [2], [3], [4]).

This paper provides a criterion for P-convexity when P is an operator of real principal type and $\partial\Omega$ does not contain intervals of straight lines. There are no smoothness conditions for $\partial\Omega$.

In Section 2 of this paper we state the main theorem and prove the necessity. The proof of necessity is rather standard and is based on [1], [2]. In Section 3 we prove sufficiency. In Section 4 we give an example of a *P*-convex set and

[†] Research partially done at the Weizmann Institute of Science. Received December 22, 1987 and in revised form September 23, 1988

discuss the relation between P-convexity and uniqueness in the Cauchy problem.

2. Main result. Necessity

Let $p(\xi)$ be the principal symbol of P. We suppose that p is real and $p(\xi) = 0$ implies $p'(\xi) \neq 0$ when $\xi \neq 0$.

THEOREM 1. Assume that $\Omega \subset \mathbb{R}^n$ is an open set and

(1) for every $x, y \in \partial \Omega$ there is $\alpha, 0 < \alpha < 1$, such that $\alpha x + (1 - \alpha)y \notin \partial \Omega$.

An open bounded set Ω satisfying (1) is P-convex if and only if:

There is no closed convex set F and an open convex set W, such that

- (a) $F \subset \overline{\Omega}$,
- (2) (b) $\partial F \cap W$ is an analytic hypersurface with normals lying in $p^{-1}(0)$,
 - (c) $\partial F \cap \partial \Omega$ is non-empty and compact in W.

In order to prove necessity we wish first to examine convex characteristic surfaces.

LEMMA 1. Let $K_1 \subset K \subset \mathbb{R}^n$ be open convex sets and let σ_1 be a supporting function of K_1 . Assume that

(3)
$$K_2 = \{x \in \mathbb{R}^n : (x, \xi) < \sigma_1(\xi), \xi \in p^{-1}(0) \setminus 0\}.$$

If u = 0 in K_1 and Pu = 0 in K, then

(4)
$$u = 0$$
 in $K_2 \cap K$.

Lemma 1 is an elementary reformulation of Theorem 8.6.8 (implication $(ii) \Rightarrow (i)$), [2].

In what follows we will denote an open ball of radius $\rho > 0$ centered at z by $B(z, \rho)$, and consider the following open convex set:

(5)
$$B_P(z, \rho) = \{x \in \mathbb{R}^n : (x, \xi) < (z, \xi) + \rho | \xi |, \xi \in p^{-1}(0) \setminus 0\}.$$

LEMMA 2. Let x_0 be a characteristic point of $\partial B(z, \rho)$, i.e., p(x-z) = 0. There is a neighbourhood W of x_0 such that $\partial B_P(z, \rho) \cap W$ is an analytic hypersurface containing x_0 . Moreover, if v(x) is a normal to a plane supporting $B_P(z, \rho)$ at $x \in \partial B_P(z, \rho) \cap W$, then

(6) the face of $B_P(z, \rho)$ containing x is an interval of the bicharacteristic line $t \to x + tp'(v(x))$,

(7)
$$v(x) \in p^{-1}(0)$$
.

We did not find a proof for Lemma 2 in literature, although it is elementary. We provide a proof here to keep the paper self-contained.

PROOF. 1. Consider the following set:

(8)
$$\Gamma_{\varepsilon} = \{x + tp'(x - z) : |t| < \varepsilon, |x - x_0| < \varepsilon, x \in \partial B(x, \rho), p(x - z) = 0\}, \varepsilon > 0.$$

Since P is of real principal type, by the implicit function theorem equations

(9)
$$|x-z|^2 = \rho^2$$
, $p(x-z) = 0$

define near $x = x_0$ an analytic manifold γ of codimension 2. The normals to this manifold, by (9), lie in the span of x - z and p'(x - z). Therefore the map

(10)
$$(x, t) \rightarrow x + tp'(x - z), x \in \gamma, t \in \mathbb{R}$$

is a smooth flow for a neighbourhood of x_0 when t is small and its image is an analytic hypersurface. Therefore, there exist $\varepsilon > 0$, such that Γ_{ε} is an analytic manifold of codimension 1 containing x_0 .

2. Let us prove that there is a neighbourhood W of x_0 , such that

(11)
$$\Gamma_{\varepsilon} = \partial B_P(x, \rho)$$
 in W .

First observe that for $\xi \in p^{-1}(0)$, $|\xi| = 1$, $x \in \gamma$ and |t| small

(12)
$$(x-z+tp'(x-z),\xi) \le \rho$$
 with an equality only at $x-z=\rho\xi$.

Indeed, $x = z + \rho \xi$ is a point of a local maximum for any fixed ξ , $|t| < \varepsilon$:

$$d_x(x-z+tp'(x-z),\xi)=0$$
 on $T_{z+\rho\xi}\gamma$, $|t|<\varepsilon$,

and

$$d_x^2(x-z+tp'(x-z),\xi) < \frac{1}{2}d_x^2(x-z,\xi) = -\frac{1}{2\rho}I < 0$$
on $T_{z+\rho\xi}\gamma \setminus 0$, for $|t|$ small.

Therefore (12) is correct if $|x-z-\rho\xi| < \delta$ for some $\delta > 0$. If $|x-z-\rho\xi| \ge \delta$, then

$$(x-z,\xi)+t(p'(x-z),\xi) \le \rho-\delta^2/2\rho+O(|t|) < \rho$$

for |t| small, and (12) follows.

By (12)

(13)
$$\Gamma_e \subset \partial B_P(z, \rho)$$
.

It remains to show now that in a neighbourhood of x_0 ,

(14)
$$\partial B_P(z,\rho) \setminus \Gamma_{\varepsilon} = \emptyset$$
.

Suppose (14) is wrong and $y \in \partial B_P(z, \rho) \setminus \Gamma_{\varepsilon}$, $|y - x_0|$ is small. Since Γ_{ε} is smooth, there is $\lambda = 0$, $x \in \gamma$ and t, $|t| < \varepsilon$, such that

(15)
$$y = x + tp'(x - z) + \lambda(x - z)$$
.

Repeating the argument used for (12), one has

(16)
$$\max_{\substack{\xi:|\xi|=1,\\g(\xi)=0}} (y-z,\xi) = \rho + \lambda, \quad \lambda \neq 0$$

and thus $y \notin \partial B_P(z, \rho)$, which contradicts (14). Thus (11) is proved.

3. Let $x + \partial B_P(x, p) \cap W$. Since (10) is a smooth flow, there is $x_1 \in \gamma$ and t, $|t| < \varepsilon$, such that

$$x = x_1 + tp'(x_1 - z).$$

Since $x_1 \in \gamma$, the vector $x_1 - z$ is characteristic. Therefore $x_1 - z$ is orthogonal to $p'(x_1 - z)$ by the Euler homogeneity theorem, and thus $x_1 - z$ is the normal to Γ_{ε} at x_1 . Since $B_P(z, \rho)$ is convex and the plane $(x_1 - z)^{\perp}$ attached at x_1 contains $\{x + tp'(x_1 - z)\}_{t \in \mathbb{R}}$, the vector $x_1 - z$ is also the normal at x. Thus, since the normals $x_1 - z$ are different for different $x_1 \in \gamma$, the face of $B_P(z, \rho)$ supported by $x_1 - z$ is an interval of $x + tp'(x_1 - z)$. The relation (6) is proved. The relation (7) follows, since $v(x) = x_1 - z$, $x_1 \in \gamma$. Lemma 2 is proved.

Proof of Necessity in Theorem 1.

1. Assume that (2) holds, and let σ_F be the supporting function of F. Let $x_0 \in \partial F \cap W \cap \partial \Omega$. By (2)(b), $\partial F \cap W$ is smooth and therefore one can find a ball $B(z, \rho) \subset F \cap W$ such that

(17)
$$\partial B(z, \rho) \cap \partial F = \{x_0\}.$$

Let us show that

(18)
$$B_P(z,\rho) \cap W \subset F \cap W$$
.

Let $\Sigma \subset p^{-1}(0) \setminus 0$ be the closure of the conic set of all exterior normals to ∂F in W. Note that, since W is convex,

(19)
$$F \cap W = \tilde{F} \cap W$$
, where $\tilde{F} = \{x \in \mathbb{R}^n : (x, \xi) \le \sigma_F(\xi), \xi \in \Sigma\}$.

Since $B(z, \rho) \subset F \subset \tilde{F}$ and $\Sigma \subset p^{-1}(0) \setminus 0$,

$$(z, \xi) + \rho |\xi| \leq \sigma_{\hat{r}}(\xi), \quad \xi \in p^{-1}(0) \setminus 0.$$

Therefore, by (5), $B_P(z, \rho) \subset \tilde{F}$ and (18) follows from (19). By (17), $\partial B_P(z, p) \cap \partial F$ is a face with a common normal $v(x_0) = x_0 - z$. Thus, by (6),

$$\partial B_P(z,\rho) \cap \partial F \subset \{x_0 + tp'(v(x_0))\}_{t \in \mathbb{R}},$$

and by (2)(a),

$$(20) \ \partial B_P(z,\rho) \cap \partial \Omega \subset \{x_0 + tp'(v(x_0))\}_{t \in \mathbb{R}}.$$

By (1), for every $\delta > 0$ there is an open set $W_{\delta} \subset W$, such that diam $W_{\delta} \leq \delta$ and

(21)
$$\{x_0 + tp'(v(x_0))\}_{t \in \mathbb{R}} \cap \partial \Omega$$
 is compact in W_{δ} .

Then (20) and (21) imply that for every $\delta > 0$,

(22)
$$\partial B_P(z,\rho) \cap \partial \Omega$$
 is compact in W_{δ} .

By (2)(a), (18) implies

(23)
$$\partial B_P(z,\rho) \cap W \subset \overline{\Omega}, W \supset W_{\delta}$$
,

and by Lemma 2 with δ sufficiently small,

- (24) $\partial B_P(Z, P) \cap W_{\delta}$ is an analytic characteristic hypersurface.
- 2. Let us quote the following non-uniqueness result (immediate from Theorem 5.2.1, [1]).

LEMMA 3. Let P be an operator of the real principal type with constant coefficients. Let $\Gamma \subset \mathbb{R}^n$ be an analytic characteristic hypersurface defined in an open set W_0 and $x_0 \in \Gamma$. Then there is a neighbourhood W_1 of x_0 and a function $u \in \mathcal{D}'(W_1)$, such that Γ divides W_1 into two domains, W_+ and W_- , P(-D)u = 0 in W and $x_0 \in \sup u \subset \overline{W}_-$.

Let us apply Lemma 3 to $\Gamma = \partial B_P(z, p)$ in W_δ . The conditions of Lemma 3 are satisfied by (24). Consequently, by Lemma 3 and (23) there is an open set $W_1 \ni x_0$, and a distribution u, such that

(25)
$$P(-D)u = 0$$
 in W_1

and

(26)
$$x_0 \in \text{supp } u \subset \overline{B_P(z, \rho)} \cap W_1 \subset \overline{\Omega}$$
.

Moreover, by (22) one can restrict W_1 so that

(27)
$$\varepsilon \equiv \operatorname{dist}(\sup u \cap \partial W_1, \mathbf{R}^n \setminus \Omega) > 0.$$

Clearly, there exists $\lambda > 0$ such that for a neighbourhood $W_2 \subset W_1$ of x_0

(28) dist(supp $u \cap \partial W_2$, $\mathbb{R}^n \setminus \Omega$) $\geq \lambda$.

Let $\chi \in C_0^{\infty}(W_1)$ be equal to 1 in W_2 and consider a family of functions

$$u_t = (\chi u)(x - t(z - x_0)), \quad t > 0.$$

Since supp $u \subset \overline{B_P(z,\rho)} \cap W_1 \subset \overline{\Omega}$, and $z - x_0$ is an inner normal to $\partial B(z,\rho)$, for t > 0 sufficiently small, $u_t \in \mathscr{E}'(\Omega)$,

(29) dist(supp u_t , $\mathbb{R}^n \setminus \Omega$) $\to 0$ as $t \to 0$

and from (28)

(30) dist(supp $P(-D)u_t$, $\mathbb{R}^n \setminus \Omega$) $\geq \lambda/2$.

By (29), (30) Ω is not *P*-convex and the proof of necessity is completed.

3. Sufficiency in Theorem 1

Assume that Ω is not *P*-convex. By Theorem 10.6.3, [2], there is $u \in \mathscr{E}'(\Omega)$ such that

(31)
$$r_1 \equiv \operatorname{dist}(\operatorname{supp} P(-D)u, \mathbf{R}^n \setminus \Omega) > r \equiv \operatorname{dist}(\operatorname{supp} u, \mathbf{R}^n \setminus \Omega).$$

Let $K \subset \mathbb{R}^n$ be a compact convex set with a supporting function $\sigma > 0$ and let

(32)
$$F_{\sigma} = \{x \in \mathbb{R}^n : \exists y \in \text{supp } u, x - y \in K\}.$$

One may write (32) also as

(33)
$$x \in F_{\sigma} \Leftrightarrow \min_{y \in \text{supp } u} \max_{\xi \in \mathbb{R}^n \setminus 0} ((x - y, \xi) / \sigma(\xi)) < 1.$$

Let

(34)
$$\sigma_0(\xi) = r |\xi|$$
.

Note that by (31)

$$(35) \ F_{\sigma_0} \subset \overline{\Omega}, \, \partial F_{\sigma_0} \cap \partial \Omega \neq \emptyset.$$

LEMMA 4. Let $x_0 \in \partial \Omega \cap F_{\sigma_0}$. Then for every $x \in B(x_0, r_1 - r)$

(36)
$$\operatorname{dist}(x, \operatorname{supp} u) = \inf_{v \in \operatorname{supp} u \cap B(x_0, r_1)} \sup_{\xi \in p^{-1}(0) \setminus 0} ((x - y, \xi) / |\xi|).$$

PROOF. For $x \in B(x_0, r_1 - r)$,

$$\rho \equiv \operatorname{dist}(x, \operatorname{supp} u) = \min_{y \in \operatorname{supp} u} \max_{\xi \in \mathbb{R}^n \setminus 0} \frac{(x - y, \xi)}{|\xi|}.$$

Assume that the value ρ is attained at some $v_0 \in \text{supp } u$. Then

$$|x_0 - y_0| \le |x - x_0| + |x - y_0| < r_1$$

and therefore

(37)
$$\rho = \inf_{y \in \text{supp } u \cap B(x_0, r_1)} \max_{\xi \in \mathbb{R}^n \setminus 0} ((x - y, \xi) / |\xi|).$$

By Lemma 1, u = 0 in $B_P(x, \rho) \cap B(x_0, r_1)$, i.e., if

(38)
$$\max_{\xi \in p^{-1}(0) \setminus 0} ((x - y, \xi) / |\xi|) < \rho \text{ and } y \in B(x_0, r_1),$$

then $y \notin \text{supp } u$. Let

(39)
$$\rho' = \inf_{y \in \text{supp } \mu \cap B(x_0, r_1)} \max_{\xi \in \rho^{-1}(0) \setminus 0} ((x - y, \xi) / |\xi|).$$

By (37), (39),

(40)
$$\rho' \leq \rho$$
.

If $\rho' = \rho$, the lemma is proved. Assume that

(41)
$$\rho' < \rho$$
.

Then there exists $y_0 \in \text{supp } u \cap B(x_0, r_1)$ such that (38) holds and therefore $y_0 \notin \text{supp } u$. Thus by contradiction (41) is not valid, and the proof is completed.

Lemma 5. Let $x_0 \in \partial F_{\sigma_0} \cap \partial \Omega$, $\sigma_0(\xi) = r |\xi|$ and $r < r_2 < r_1$. For every convex homogeneous function σ such that

(42)
$$\sigma(\xi) = \sigma_0(\xi)$$
 for $\xi \in p^{-1}(0)$, $\sigma_0(\xi) \le \sigma(\xi) \le r_2 |\xi|$, $\sigma(-\xi) = \sigma(\xi)$

the relation

(43)
$$F_{\sigma_0} \cap B(x_0, r_1 - r_2) = F_{\sigma} \cap B(x_0, r_1 - r_2).$$

holds.

PROOF. If $x \in F_{\sigma} \cap B(x_0, r_1 - r_2)$, then by (33), (42),

$$\min_{y \in \text{supp } u} \max_{\xi \in \mathbb{R}^n \setminus 0} \frac{(x - y, \xi)}{\sigma(\xi)} \leq 1.$$

Let the minimum be attained at $y_0 \in \text{supp } u$. Then since $\sigma(\xi) \leq r_2 |\xi|$ by (42),

$$|x_0 - y_0| \le |x - y_0| + |x - x_0| < r_2 \max_{\xi \in \mathbb{R}^n \setminus 0} \frac{(x - y_0, \xi)}{\sigma(\xi)} + r_1 - r_2 < r_1$$

and $y_0 \in B(x_0, r_1)$. By (42),

$$\inf_{\substack{y \in \text{supp } u \cap B(x_0, r_1)}} \max_{\xi \in p^{-1}(0) \setminus 0} \frac{(x - y, \xi)}{\sigma_0(\xi)} = \inf_{\substack{y \in \text{supp } u \cap B(x_0, r_1)}} \max_{\xi \in p^{-1}(0) \setminus 0} \frac{(x - y, \xi)}{\sigma(\xi)}$$

$$(44)$$

$$\leq \inf_{\substack{y \in \text{supp } u \cap B(x_0, r_1)}} \max_{\substack{\xi \in \mathbb{R}^n \setminus 0}} \frac{(x - y, \xi)}{\sigma(\xi)} \leq 1$$

and by Lemma 4, $x \in F_{\sigma_0} \cap B(x_0, r_1 - r_2)$. Conversely, since $\sigma_0(\xi) \leq \sigma(\xi)$, $F_{\sigma_0} \subset F_{\sigma}$ and the lemma is proved.

We can now complete the proof of Theorem 1.

1. Let us take $x_0 \in \partial F_{\sigma_0} \cap \partial \Omega$. By the definition of F_{σ_0} (see (32), (34)) there exists $y_0 \in \text{supp } u$ such that

(45)
$$|x_0 - y_0| = r$$
.

Consider the compact convex set

(46)
$$K = \overline{B_P(y_0, r) \cap B(x_0, r_2)}$$
 for $r < r_2 < r_1$

and let σ be the supporting function of K. Clearly, σ satisfies (42) and therefore, by Lemma 5, $K \cap B(x_0, r_1 - r_2) \subset F_{\sigma_0}$ and by (35)

$$(47) K \cap B(x_0, r_1 - r_2) \cap \overline{\Omega}.$$

2. By (31), (45), $y_0 \in \text{supp } u \setminus \text{supp } P(-D)u$. Since $B(x_0, r) \cap \text{supp } u = \emptyset$ and $y_0 \in \partial B(x_0, r)$, the Holmgren uniqueness theorem implies that the normal to $\partial B(x_0, r)$ at y_0 is characteristic, i.e.,

(48)
$$x_0 - y_0 \in p^{-1}(0)$$
.

Therefore, by (5), $x_0 \in \partial K$. Moreover, since $x_0 \in \partial B(y_0, r)$, $x_0 - y_0$ is also the

exterior normal to $\partial B(y_0, r)$ at x_0 . By Lemma 2, the face of K with the common exterior normal $x_0 - y_0$ is an interval on $t \to x_0 + tp'(x_0 - y_0)$.

3. Note that since $x_0 - y_0$ is an exterior normal to $\partial B(y_0, r)$ at x_0 ,

(49)
$$B(y_0 + (1 - r_0/r)(x_0 - y_0), r_0) \subset B(y_0, r)$$
 for $0 < r_0 < r$

and the only common point of the boundaries of these two sets is x_0 where the common exterior normal is $x_0 - y_0$.

Therefore, by (5),

(50)
$$B_P(y_0 + (1 - r_0/r)(x_0 - y_0), r_0) \subset B_P(y_0, r),$$

and, due to Lemma 2,

(51)
$$x_0 \in \partial B_P(y_0 + (1 - r_0/r)(x_0 - y_0), r_0)$$

 $\cap \partial B_P(y_0, r) \subset \{x_0 + tp'(x_0 - y_0), t \in \mathbb{R}\}.$

4. Consider the set

(52)
$$F = \overline{B_P(y_0 + (1 - r_0/r)(x_0 - y_0), r_0) \cap B(x_0, r_1 - r_2)}.$$

By (50), (46)

(53)
$$F \subset K$$

and by (47), (53), F satisfies (2)(a). By Lemma 2 and (52) there is an open convex set $W_0 \ni x_0$, $W_0 \subset B(x_0, r_1 - r_2)$, such that $\partial F \cap W_0$ is an analytic hypersurface with normals in $p^{-1}(0)$. Thus, F satisfies (2)(b) for any convex $W \subset W_0$.

$$x_0 \in \partial F \cap \partial K \subset \{x_0 + tp'(x_0 - y_0), t \in \mathbb{R}\}.$$

Therefore by (47)

(54)
$$x_0 \in \partial F \cap \partial \Omega \subset \{x_0 + tp'(x_0 - y_0), t \in \mathbf{R}\}.$$

Then by (1) there is an open convex set $W \subset W_0$ such that

(55) $\partial F \cap \partial \Omega$ is compact in W.

By (54),

(56)
$$\partial F \cap \partial \Omega = \emptyset$$

and by (55), (56), F satisfies (2)(c).

Theorem 1 is proved.

4. P-convexity and uniqueness theorems. Example of a P-convex set

1. Assume for the sake of simplicity that Ω is bounded and $\partial\Omega$ is analytic and satisfies a certain geometric condition (A). We will say that (A) is a local uniqueness condition at $x_0 \in \partial\Omega$ for the operator P if from (A) it follows that for every neighbourhood V of x_0 there exists a neighbourhood W of x_0 such that $u \in \mathcal{D}'(\mathbb{R}^n)$, Pu = 0 in V and u = 0 in $V/\overline{\Omega}$ imply u = 0 in W. For example, if $\xi(x_0)$ is the normal to $\partial\Omega$ at x_0 , then

(57)
$$p(\xi(x_0)) = 0$$

is a local uniqueness condition at x_0 (by the Holmgren uniqueness theorem). Other uniqueness conditions are also known:

- (58) there exists a sequence $t_j \to 0$ such that $x_0 + t_j p'(\xi(x)) \notin \overline{\Omega}$ and
 - (59) the twisted surface condition; see Definition 3.1, [5].

For more details see Sections 1-3 in [5] and references cited therein.

If at every point of $\partial\Omega$ either (57), or (58) or (59) holds, then by local uniqueness and since $\partial\Omega$ is compact, dist(supp Pu, $\mathbb{R}^n \setminus \Omega$) $\geq \varepsilon > 0$ and supp $u \in \overline{\Omega}$ imply that dist(supp u, $\mathbb{R}^n \setminus \Omega$) has a uniform positive lower bound, and therefore Ω is P(-D) convex. In the paper [3] a uniqueness condition, similar to (59), was established to study P-convexity and it is the weakest uniqueness condition in \mathbb{R}^3 found in the literature.

2. We wish to present an example of a P-convex set in \mathbb{R}^4 when

(60)
$$p(\xi) = \xi_1 \xi_3 + \xi_2^2 - \xi_4^2$$
.

Let

(61)
$$f(x) = x_3 + x_1 |x_2| - x_1^4 + x_3 x_4$$

and

(62)
$$\Omega_{\varepsilon} = \{x \in \mathbb{R}^4 : |x| < \varepsilon, f(x) < 0\}, 0 < \varepsilon < 1.$$

We wish to show that Ω_{ϵ} is *P*-convex when ϵ is small. Although Ω_{ϵ} does not satisfy the condition (1) of Theorem 1, Theorem 1 is still applicable for the following reason: The actual condition used in our proof is weaker than (1):

(1') If F is a closed convex set and W is an open convex set such that $F \subset \overline{\Omega}$ and $\partial F \cap W$ is an analytic hypersurface with normals $\xi(x) \in p^{-1}(0)$, then for every $x \in \partial F \cap \partial \Omega \cap W$, the set $\{x + tp'(\xi(x))\}_{t \in \mathbb{R}} \cap \partial \Omega$ does not contain any interval of $\{x + tp'(\xi(x))\}_{t \in \mathbb{R}}$.

Clearly, if (1) holds, then $\partial\Omega$ does not contain intervals of straight lines, in particular of those specified in (1').

We will therefore apply Theorem 1 with (1') replacing (1) to show that Ω_{ϵ} is P-convex when ϵ is small. Some details of the proof will be left to the reader.

3. Assume that Ω_{ϵ} is not P-convex. Then there exist sets F, W satisfying (2). Let $x \in \partial F \cap \partial \Omega_{\epsilon} \cap W$. Then by (2a), (2b), $\partial \Omega_{\epsilon}$ has a characteristic interior normal $\xi \in \rho^{-1}(0)$. Moreover, since $\tilde{x} + tp'(\xi) \in \partial F$ when t is small, (2a) implies $\tilde{x} + tp'(\xi) \in \Omega_{\epsilon}$ for t small. Therefore \tilde{x} cannot lie on the spherical portion $\partial B_{\epsilon} \cap \partial \Omega_{\epsilon}$ of $\partial \Omega_{\epsilon}$: either such an \tilde{x} would not be characteristic or the line $t \to \tilde{x} + tp'(\xi)$ would be tangent to ∂B_{ϵ} and lie in the exterior. The remaining part of $\partial \Omega_{\epsilon}$ is smooth when $x_2 \neq 0$ and it is easy to compute the value of p on the normal vector:

(63)
$$p(f'(x))|_{f(x)=0} = (1+x_4)(|x_2|-4x_1^3)+x_1^2-\left(\frac{x_1|x_2|-x_1^4}{1+x_4}\right)^2$$
.

One can observe that if ε is small, none of $x \in \{x \in \mathbb{R}^4 : (x) = 0, x_2 \neq 0, |x| < \varepsilon\}$ is characteristic and, necessarily, $\tilde{x}_2 = 0$. Consider the case $\tilde{x}_2 = 0$, $\tilde{x}_1 < 0$. At such points, $\partial \Omega_{\varepsilon} \cap \bar{B}_{\varepsilon}$ has a cone of interior normals

(64)
$$\xi(\alpha) = (-4\tilde{x}_1^3, \alpha \tilde{x}_1, 1 + \tilde{x}_4, \tilde{x}_3), |\alpha| \le 1.$$

Computing $p(\tilde{\xi}(\alpha))$ one can see that it is positive when ε is small. Consider the case $\tilde{x}_2 = 0$, $\tilde{x}_1 > 0$. At these points $\partial \Omega_{\varepsilon} \cap \tilde{B}_{\varepsilon}$ has a cone of exterior normals and therefore $\tilde{x} \notin \partial \Omega_{\varepsilon} \cap F$ since $\partial F \subset \bar{\Omega}_{\varepsilon}$ is a smooth surface.

Thus, necessarily, $\tilde{x}_1 = \tilde{x}_2 = 0$. Since $\tilde{x} \in f^{-1}(0)$, by (61), $\tilde{x}_3 = 0$ and $\tilde{x} = (0, 0, 0, \tilde{x}_4)$. This is a characteristic point with $\tilde{\xi} = (0, 0, 1 + x_4, 0)$ and $p'(\tilde{\xi}) = (1 + x_4, 0, 0, 0)$. Note that $\tilde{\xi} \neq 0$ since $|x| < \varepsilon < 1$. Remarkably, this is not a uniqueness point by condition (58), and condition (59) is formulated only for smooth surfaces (although it is perhaps possible to apply here the technique of [5], [6], too).

Now, since ∂F is a smooth characteristic surface, it contains a biocharacteristic line $t \to \tilde{x} + tp'(\tilde{\xi})$ and at every point of this line the normal to ∂F is parallel to $\tilde{\xi}$, and, consequently, the surface

$$S_N = \{x_3 = -N(x_2^2 + (x_4 - \hat{x}_4)^2)\}$$
 with $N > 0$ sufficiently large

lies in F. Let us compute the value of f at $x \in S_N$:

(65)
$$f(x) = x_1 |x_2| - x_1^4 - N(1 + x_4)(x_2^2 + (x_4 - \hat{x}_4)^2).$$

Set
$$x_4 = \tilde{x}_4$$
, $M = (1 + \tilde{x}_4)N$, $x_2 = \xi$, $x_1 = (M + 1)s$. Then

(66)
$$f(x) = s^2 - (M+1)^4 s^4$$
.

Since $\varepsilon < 1$ and $|\hat{x}_4| < |\hat{x}| < \varepsilon$, the number M is positive, and for every M (resp. N) there is a neighbourhood of s = 0 where f(x) > 0. Thus $S_N \setminus \Omega_{\varepsilon} \neq \emptyset$ and, since $S_N \subset F$, the set F does not satisfy (2). We conclude therefore that for ε sufficiently small, Ω_{ε} is P-convex.

REFERENCES

- 1. L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.
- 2. L. Hörmander, *The Analysis of Linear Partial Differential Operators*, Vols. I, II, Springer-Verlag, Berlin, 1983.
- 3. J. Persson, The Cauchy problem at simply characteristic points and P-convexity, Ann. Mat. Pura Appl. 122 (1979), 117-140.
- 4. J. Persson, The wave operator and P-convexity, Boll. Un. Mat. Ital. (5) 18-B (1981), 591-604.
- 5. X. Saint-Raymond, Contribution to the study of the uniqueness in the analytic Cauchy problem, Commun. Partial Differ. Equ. 12 (1987), 1345-1364.
- 6. K. Tintarev, On complementary geometrical conditions of uniqueness and non-uniqueness for operators with simple characteristics, Commun. Partial Differ. Equ. 11(9) (1986), 989-1008.